TrajWiseLearning——StarPO (State-Thinking-Actions-Reward Policy Optimization)
简介
StarPO (State-Thinking-Actions-Reward Policy Optimization) 是一种用于LLM智能体训练的强化学习算法。它通过将整个多轮交互轨迹(包括观察、推理轨迹、动作和反馈)视为一个连贯的单元来进行优化,而不是像传统方法那样独立处理每个动作。
StarPO的核心思想是轨迹级别的优化,它交替进行两个阶段:
- Rollout阶段:生成推理-交互轨迹
- Update阶段:基于完整轨迹进行模型优化
StarPO 配置参数
在 ROLL 中,StarPO实现核心代码位于roll/pipeline/agentic/utils.py,使用StarPO算法特有的配置参数如下(roll.pipeline.agentic.agentic_config.AgenticConfig):
# StarPO core config
# StarPO related
adv_estimator: "reinforce"
# rollout_batch_size是轨迹的条数
rollout_batch_size: 1024
val_batch_size: 1024
sequence_length: 1024
advantage_clip: 0.2
ppo_epochs: 1
# pg_clip: 0.1
#dual_clip_loss: True
init_kl_coef: 0.0
whiten_advantages: true
entropy_loss_coef: 0
max_grad_norm: 1.0
reward_normalization:
grouping: traj_group_id # 可以tags(env_type)/traj_group_id(group)/batch(rollout_batch)... group_by计算reward/adv
method: mean # asym_clip / identity / mean_std / mean
train_env_manager:
max_env_num_per_worker: 16
num_env_groups: 128
# under the same group, the env config and env seed are ensured to be equal
group_size: 8 # grpo的grpo
tags: [FrozenLake]
num_groups_partition: [128] # If not set, all env names divide nums equally. Under the same group, the env config and env seed (prompt) are equal in each generation
env_manager_cls: roll.pipeline.agentic.env_manager.traj_env_manager.TrajEnvManager
核心参数说明
adv_estimator: 优势估计器类型,设置为 "reinforce",这是StarPO算法的核心配置env_manager_cls: 轨迹环境管理器类,StarPO需要使用roll.pipeline.agentic.env_manager.traj_env_manager.TrajEnvManager